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LETTER TO THE EDITOR 

Hard hexagons: exact solution 

R J Baxter 
Department of Theoretical Physics, Research School of Physical Sciences, The Australian 
National University, Canberra, ACT, 2600 Australia 

Received 14 November 1979 

Abstract. The hard-hexagon model in lattice statistics (i.e. the triangular lattice gas with 
nearest-neighbour exclusion) has been solved exactly. It has a critical point when the 
activity z has the value 5(11+5J5) = 11.09017 . . ., with exponents (Y =$, p =$. More 
generally, a restricted class of square-lattice models with nearest-neighbour exclusion and 
non-zero diagonal interactions can be solved. 

Various models of systems of rigid molecules have been studied. In general they are 
expected to undergo a transition from a disordered fluid state to an ordered solid state 
as the density increases. For dimensions greater than one, the only non-trivial exact 
results are for some two-dimensional lattice models, either at close-packing (dimers and 
some colouring problems: Kasteleyn (1961), Fisher (1961), Baxter (1970)), or with 
special next-nearest neighbour interactions added to make the model solvable (Fisher 
1963). Here I indicate that the hard-hexagon model (the triangular lattice gas with 
nearest-neighbour exclusion) can be solved for all densities, and give the main results. A 
full derivation will appear later. 

The hard-hexagon model has been studied numerically (Runnels and Combs 1966, 
Gaunt 1967) and found to have an order-disorder transition at t = 11.09, where z is the 
activity. Metcalf and Yang (1978) made further approximate numerical studies for 
z = 1, and Baxter and Tsang (1980) extended these by using the corner-transfer matrix 
(CTM) method. 

Some intriguing properties emerged from this last approximate calculation. If 
al ,  az ,  a 3 , .  . . and a; ,  a;, a;,  . . . are the eigenvalues of the CTMS A ( + )  and A(-) 
(arranged in numerically decreasing order), then it turned out that a l a 3 / a ~  was very 
close to one, and became closer the higher the approximation. More generally, the 
limiting values of ul, a2, . . . , al,  az,  . . . appeared to satisfy I I  

(1) 
1 i m  an = a1x , a ; = a l x  , 

where x = a2/u1  and 1, m are integers dependent on n. 
Very similar properties occur in the king and eight-vertex models (Baxter 1976, 

1977, Tsang 1977), so this suggested to me that the model should be solvable. I have 
now established that it is. Here I shall give the results and a brief outline of the 
derivation. A full account will be published later. 

Set 
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Let z be the activity and K = Z1/N the partition function per site. Then, for z less than 
some critical value zc ,  

z = -x[g(x)15, (3) 
5 n - 4 ) 2 ( 1  - X 5 n - 1  2 

(4) 
00 (1-x6"-4 )(I --x 6n-3)2(1  - X 6 n - 2  H 1 - X  ) ( 1 - X 5 y  

K =  n = l  

while for z > zc 

(1 - x 6 n - 5 ) ( 1  - X 6 n - 1  )(I - x 6 n ) 2 ( 1  -X5n-3)3(1  -X5n-2)3 

2-1 = x [ g ( x ) I 5 ,  ( 5 )  
-1/3 fi (1 - x 3 n - 2 ) ( 1  - X 3 n - 1  )(I - X 5 n - 3 ) 2 ( 1  - X 5 n - 2  ) 2 (1-xsn)2 

K = X  (1 - x 3 n ) 2 ( 1  -X5n-4)3(1 -X5n-1 )3  . (6) 

~ ~ = ~ ( 1 1 + 5 J ~ ) = 1 1 ~ 0 9 0 1 7 , .  ., (7) 

n = l  

Eliminating x gives K as a function of 2. For 0 < z < zc, x is negative; for z > zcr x is 
positive. In both cases 1x1 < 1. As x decreases from 0 to - 1, z in (3) increases from 0 to 

while as x decreases from 1 to 0, z in (5) increases from this same zc to 00. It follows that 
K ( Z )  is analytic except at z = zc ,  so z = zc is the critical point. (Gaunt actually 
conjectured (7) in 1967, using his numerical results, but did not include this conjecture 
in his paper.) 

The behaviour near zc can be obtained by using identities between elliptic functions 
of conjugate moduli. Doing this, setting 

t = ( z  - zc ) / (5J5zc ) ,  (8) 

as t + * 0, where 

~ , = [ 2 7 ( 2 5 +  11J5)/250]1/2=2-3144. .  .. (10) 

pc=(5-J5) /10=O*276393. .  . , (11) 

The density p = za(ln K ) / ~ z  is therefore continuous at zc,  with value 

while the compressibility diverges as Iz - Z ~ I - " ~ ,  so the critical exponent a has the value 
5. 

At high densities one sublattice (say 1) is occupied preferentially over the other two 
(2 and 3). Let P k  be the mean density on sublattice k (at close packing p l =  1, 
p2 = p3 = 0). Then the order parameter is 

R = p i  -pz=pi-p3. (12) 

R = (3/J5)t1/'[l +O(t )] ,  (13) 

Expressions for p l ,  p2, p3 are given in (40). From these one can prove that near z ,  

so the exponent p has the value 6. It is interesting that these exponents a, p differ from 
those of the Ising model (0, Q) and of hard squares (0.09*0-05, Q) (Baxter et a1 1980). 
Enting has suggested to me that both hard hexagons and hard squares may have S = 14. 
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Star-triangle relation 

In solving the model I was guided by the eight-vertex model. I first looked for models 
whose transfer matrices commute with that of hard hexagons. This led me to regard 
hard hexagons as a square lattice gas in which nearest-neighbour sites, and next-nearest 
neighbour sites on NW-SE diagonals, cannot be simultaneously occupied. Thus the 
partition function for a lattice of N sites is 

where uj is the occupation number at site i, the sum is over all values of ul, . . . , vN, the 
product is over all faces (i, j ,  k,  I )  of the square lattice (i, j ,  k,  1 being the four sites round 
the face, starting at the bottom-left and going anti-clockwise), and W(uj ,  ai, U k ,  U ( )  is 
the Boltzmann weight of the interactions within a face. 

For the moment let W(a,  b, c, d )  be an arbitrary function. Consider two models, 
one with function W, the other with function W’. Proceeding similarly to Appendix B 
of Baxter (1972), one can verify that the row-to-row transfer matrices of the models 
commute if there exists a third function W” such that 

for all values of the six spins a , .  . . , f .  (This is a generalisation of equation (4.3) of 
Baxter (1978a), which is in turn a generalisation of the star-triangle relation of the Ising 
model.) 

Now let W correspond to a model with nearest-neighbour exclusion plus diagonal 
interactions. Let vi = 0 if site i is empty, = 1 if site i is full. Sharing out the site activity z 
between the four adjacent faces then gives 

w ( ~ ,  b, c, d )  = m z ( a + b + c + d ) / 4  Lact-Mbd -a+b-c+d e t if ab = bc = cd = da = 0 

= 0 otherwise. (16) 

(This t cancels out of (14), but is needed in (15); m is a trivial normalisation factor. For 
the original hard-hexagon model m = 1, L = 0 and M = -00.) 

Define W’( W”) similarly, replacing z ,  L, M, t by z’,  L’, M’, t‘(“’, L”, M”, t”). For 
convenience, interchange L’ and M’,  and set s = ( z ~ ’ z ’ ’ ) ~ ” / ( t t ’ r ’ ’ ) ,  Then (15) gives 

- s +s2 e‘ 
Z ( Z ~ z , i ) l / 2  eM - 2 3 L’+L” - s  + s  e 

M+M’+M” 3 4 L+L’+L” 
ZZ’Z’ ’  e = s  + s  e , 

together with four other equations obtained from (17) and (18) by permuting the 
unprimed, primed and double-primed sets of variables. With an obvious notation these 
can be called (17’), (17”), (18’), (18”). Eliminating s, z”, L”, M” from all seven equations 
leaves 

Aj = A:, i = 1,2 ,  3, (20) 
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where 
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and A;, A i ,  A; are defined similarly, z ,  L, M being replaced by z ' ,  L', M ' .  
[Let (t) =eL'(17)-eL(17'). Then (17), (17'), (18), (18') give Al = A i ;  (t), (17"), (18), 

(18') give A2 = A i ;  (t), (18), (18'), (18"), (19) give A3 = A;.] 
In general the only solutions of (20) are z ' ,  L', M ' =  z ,  L, M or z ,  M, L, implying 

merely that the transfer matrix commutes with its transpose or itself. However, a 
corollary of (21) is 

A 1 A 2 - 1 = ( A 3 - A 1 - A 2 ) e L + M ,  (22) 

so if the values of Al ,  A2, A3 satisfy 

then (22) is satisfied identically, and (20) reduces to only two equations, say i = 1,2 .  It 
follows that all transfer matrices commute for which 

z = (1 -e-")(l -e-M)/(eL+M -eL-eM), (24) 

and have the same value of 

The restriction (24) is satisfied for all z if L + 0 and M + -CO, corresponding to the 
hard-hexagon model. It is not so satisfied if L, M +0, i.e. by hard squares: indeed, 
recent series results for hard squares (Baxter et a1 1980) gave no indication of any 
simple properties like (1). 

The next step is to find a parametrisation of z ,  L, M as single-valued functions of 
some complex variable w such that (24), (25) are automatically satisfied and A is 
independent of w. As with the original star-triangle relation (Appendix 2 of Onsager 
(1944)), this introduces elliptic functions. Define the function f ( w ,  q ) ,  or simply f (w) ,  
by 

and let wl, . . . , w 5  be the Boltzmann weights of the allowed spin configurations round a 
face: 

o1 = W(OOO0) = m, 

u 2  = ~ ( 1 0 0 0 )  = W(OOIO) = m ~ " ~ t - l ,  

u3 = w(oioo) = w(oooi) = m P 4 t ,  
1/2 -2 L 

1/2 2 M 

04= W(1010)=mz t e , 

u5=  W(0101)=mz t e . 
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Then in the regimes I and IV of figure 1, a convenient parametrisation is 

2 1/2 
0 1  = f ( x w ) l f b ) ,  w 2 =  r - ' ( - x ) ' l ' f ( w ) / [ f ( x ) f ( x  11 , 

0 5  = r Z f ( x 2 w - l ) / f ( x 2 ) ,  

0 3  = r f ( x 2 w ) / f ( x 2 ) ,  w4 = r - 2 w f ( x w - 1 ) / f ( x ) ,  (28a 1 
A2 = - X [ f ( X 2 ) / f ( X ) l 5 ,  

where f ( w )  is defined by (26 )  with q = x 5 ,  and x,  w are real and satisfy 

Regime I: o > x > - 1 ,  1 > w > x 2 ,  

Regime IV: O > X > - l ,  x - * >  w > 1.  

" t  

Figure 1. Regimes in the (L, M )  plane. Shaded areas are unphysical, since (24) gives z to be 
negative. Regimes I, 111, V are disordered, I1 and VI have triangular ordering, Iv' has 
square ordering. Inter-regime boundaries are given by (24), (25) and (30). Regimes V and 
VI differ from I and I1 only by a 90" lattice rotation, so they are not further considered 
herein. 

In regimes I1 and I11 of figure 1 it is more convenient to use the parametrisation 

2 1/2 
0 1 = f ( x  2 w  ) / f ( X 2 ) ,  

0 3  = r f ( x w - l ) / f ( x ) ,  0 4  = r -2Wf(X2W-1) / f (X2) ,  (28b)  

0 2  = r - 1 x 1 / 2 f ( w ) / [ f ( x ) f ( x  ) I  7 

wr; = r 2 w - ' f ( x w ) / f ( x ) ,  A' = x [ f ( x ) / f ( x 2 ) 1 5 ,  
-1  Regime 11: O < x < l ,  x > w > l ,  

Regime 111: O < X < l ,  l > w > x ,  

and again f ( w )  is defined by (26 )  with q = x 5 .  In both cases wl , .  . . , os are entire 
functions of w ; A is independent of w .  

As x + 0, z ,  zeL, zeM + 0 in regimes I and 111, which is the low-density limit; in 11, eL 
and e-M become large (while z - l ) ,  in which limit the system adopts a triangular 
ordered state with every third site in a row (or column) occupied; in IV, z becomes large 
while L, M - 1,  so the system adopts the usual square-lattice close packing, every other 



L66 Letter to the Editor 

site being occupied, Thus in every case the limit x + 0 is one of extreme disorder or 
order. 

The other boundaries of the regimes are 1x1 + 1. In every case this corresponds to 

(30) A-? = [;(JS+ 1)15 = $(ii + 5J3. 

This is the equation of the lines separating I from 11, I11 from IV, V from VI in figure 1. 
In the Ising and eight-vertex models one can obtain tractable equations for the 

eigenvalues of the row-to-row transfer matrix, for a lattice with a finite number of 
columns. I have not found a way to do this for the present model. Instead I have 
considered the infinite lattice and used the following argument (which is correct for the 
Ising and eight-vertex models). 

Free energy 

Let VA[ VB] be the ‘transfer matrix’ that adds a single face to the lattice, going in the 
SE-NW [SW-NE] diagonal direction. It has entries W(a,  b, c, d ) [  W(d,  a, b, c)] in row 
(a, b, c) and column (a, d, c). Let VL = w1 VA/(W~OJ)  [similarly for U;]. From (28), 
Vk, Vi3 are functions of r and w (regarding x as constant), and 

vL(r, w)vL(r:/r ,  w;/w)= vf3(r, w ) v L ( r - l ,  w-l)= 1, (3 1) 

3 -  where r i  = -x/g(x), x-’g(x), xg(x), -x-’/g(x) and W O  = x , x 3’2, x ,  x - ~  in regimes I, 
11, 111, IV, respectively. 

In equations (12) and (13) of Baxter (1976) it is shown that the corner transfer 
matrix (CTM) A[B] is a product of M matrices VA[ VB], except that it should be divided 
by K to ensure that the limit M + 03 exists. For w real and satisfying (29), let yo  be the 
maximal eigenvector of A[B]. Then K can be defined as the normalising divisor of 
VA[ VB] that ensures that the yo-eigenvalue of A[B] tends to a finite non-zero limit. 

The star-triangle relation (15) implies that all CTMS with the same x commute. Thus 
yo is independent of r and w, and the above definition of K can be extended beyond the 
interval (29) appropriate to the regime under consideration. Since K is independent of 
r, for fixed x it can be written as K(w). Let 

M 

Then (31) and the above definition of K(W) imply that 

The equations (33) ‘almost’ define A(w) .  For instance, suppose one knew that 
In R(w)  was analytic in an annulus a < 1 w I < b containing w = 1 and w = wo. Then it 
would have a Laurent expansion. Taking logarithms of (33), it is easily found that all 
terms in this expansion must be zero, so h(w) = 1. (In regime 111, exactly this happens.) 

From series expansions it appears that In[ W - * K  (w)]  is analytic in such an annulus, 
where A =0 ,  f, 0, 3 in regimes I, 11, 111, IV, respectively (corresponding analyticity 
properties exist for the king and eight-vertex models.) Using this, (32) and (28), A ( w )  
can be factored into a known singular part and an unknown part whose logarithm is 
Laurent-expandable. The coefficients of this expansion can then be obtain5d from (33), 
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giving 

111: A = l ,  
(34) 

Equations (3)-(6) follow by taking the limit w + x 2  in I and w + x V 1  in 11, using (32) 
and (28). 

Sublattice densities 

The star-triangle relation implies that the CTMS commute and their eigenvalues are of 
the form 

C ( X ) W  n ,  (35) 

where c ( x )  is independent of w and n is an integer (I conjectured this property for the 
eight-vertex model in 1976 and can now establish it). 

The relations (31) for Va  and Vf3 imply the same relations for the CTMS A and B, 
and these can be used to fix the coefficients c ( x ) .  The integers n can then be obtained 
from the small-x limits. 

As in Baxter (1976), the rows and columns of A and B can be labelled by 
7 = {UI ,  u2, ( ~ 3 ,  . . . }, where ul,  u2, u3, . . . are now occupation numbers (value 0 or 1) 
and ai, ujitl cannot both be one (for all j ) .  Let Ad[Bd]  be the diagonalised matrix A [ B ] ,  
and let a ( ~ ) [ b ( ~ ) ]  be the eigenvalue entry in row and column 7. Then the above 
reasoning gives 

and u j + s j  as j+a. 
Here s l ,  s2, s3,. . . are the ground-state values of ul, u2, u3, .  . . , corresponding to 

the maximum eigenvalues of A and B. In the ordered states they depend on the 
sublattice on which the CTM is centred. They are 

I :  sj = 0 ,  

11: S 3 j + k  = 1, U 3 j + k a l  = 0 ,  k = 1, 2, 3, 
(38) 

111: sj = 0, 

IV: SZj+k  = 1, S Z j + k + l  = 0,  k = 1 , 2 .  
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Here one first fixes the regime (I to IV) and, if necessary, the value of k .  Then (38) 
applies for all integers j ;  a(T),  b(T) are given by (36) and (37). 

In regimes I1 and IV, k specifies the sublattice under consideration. Thus there are 
three matrices A[B] in regime 11, and two in regime IV. 

Let Ak, Bk be the CTMS for sublattice k.  Then from the definition of the CTMS 

(Baxter 1976, 1978b), the probability of occupancy of a site on sublattice k is 

Pk = Tr S(AkBk)2/Tr(AkBk)2, (39) 

where S is a diagonal operator with entries al. Going to a diagonal representation (S, 
Ak, B k  all commute) and using (36) gives 

These summations are over all states 7 = {al, u2, cr3, . . . }such that crjaj+l = 0 for all 
j ,  and ai tends to the appropriate si as j + 00. Note that Pk is independent of r and w. 

Critical behaviour 

The free energy is singular across the 1-11 and III-IV boundaries given by (37). Its 
behaviour near these boundaries can be obtained by using identities between elliptic 
functions of conjugate moduli. Define E ,  U ,  q by 

2 I and IV: x = - e  - v 2 / S e  = e 2 d c  q = , , 
- 4 d / S e  -4.rrul. q 2  = ’ (41) 

I1 and 111: x = e  , w = e , 
Then (27) and (28) imply 

A’ = & / 5 ,  q)1&(2~ /5 ,q ) ,  

eM = e l ( u  + d 5 ,  q)e1(u +2.rr/5, m(+, 4) 
(42) 

e:(u - d 5 ,  q ) e 1 ( 2 d 5 ,  4) > 

where Bl(u, q )  is the usual elliptic theta function ( 3  8.181.3 of Gradshteyn and Ryzhik 
(1965)): q enters (42) only via q2. 

The equations (42) (and corresponding formulae for z ,  eL) are true in all regimes 
(with - r / 5  < U < 0 in I and 11, 0 < U < ~ / 5  in I11 and IV). It follows that q 2  and U are 
analytic across a critical boundary, q2  having usually a simple zero thereon. From (34), 
for q2 small: 

sin(71-13 - 5u/3) [ 1 - 2 ~ 3 / ~ 2 1 5 / 3  si0 -+0(q20/3)] 10u 
3 

I and 11: A =  
sin(v/3+5u/3) 

IV: A = 1 -4(-q2)”’ sin 5u + 0 ( q 1 O ) .  (43b) 

The critical exponents a, a’ therefore are both 5 across the 1-11 boundary (disorder 
to triangular ordering), while a’ = --+ in IV (square ordering). 

For U = - ~ / 5  the model becomes that of hard hexagons, for which the total mean 
density p can be obtained by differentiating K .  Since p depends on q2,  but not on U ,  this 
result can be applied along the entire 1-11 boundary, giving 

p = pc+ 5-1/’sgn(q2)lq2/2’3 + 0 ( q 2 ) ,  (44) 

where pc = (5 -J5)/10 = 0.27639 . . .. 
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as 
Also, using (40), it can be shown that the order parameter in I1 behaves for small q 2  

R = p 1 - p2 = p1- p3 = 3q2l9/ JV[ 1 + 0 ( q 2 ) ] ,  (45) 

so p = $. (But note that all exponent values herein apply only to paths in ( z ,  L, M )  space 
lying on the surface (24): only for pure hard hexagons are these necessarily the usual 
exponents.) 

Conjectures 

All the above results have been proved, subject only to assumptions such as the 
thermodynamic limit existing and K ( w )  being analytic in an appropriate annulus. 

The numerator and denominator in (40) can be regarded as 'one-dimensional 
partition functions' and written as elements of an infinite product of two-by-two, or 
three-by-three, matrices. The resulting expressions are still unwieldy, but they appear 
to simplify to tractable infinite products of theta function type. For instance I have used 
them to expand R to order 80 in a power series in x, and the results agree with 

m 

11: R =  n ( l - . ~ " ) ( l - ~ ~ " ) / ( l - ~ ~ " ) ~ ,  
n = l  

m 
(46) 

IV : R = n (1 -xZn)'(l -x5")/[(1 - ~ " ) ( l  -x4")']. 
n = l  

(The order parameter of the eight-vertex model has a similar product expansion: 
Barber and Baxter (1973).) The first formula also agrees with (45), so it is a very 
plausible conjecture (but still a conjecture) that (46) is exactly correct. 

There appear to be a number of such mathematical identities, the simplest of which 
(for p / ( l  - p )  in regime I) are the Rogers-Ramanujan identities (Ramanujan 1919). 
Some others are contained in the 130 generalisations of Slater (1951), but at present I 
can in general only claim them as conjectures. From them I find that 

-1/2 1 /2  111: p=pc-5  4 +O(q), 

IV: p =pc+51/2(-q2)+0(q4), 

R = 2(-q2)1/4/JV[1 + 0(q2)1, 

(47) 

where again pc = ( 5  - &)/ 10. These give the critical exponents across the 111-IV 
boundary to be a = t ,  p = $. Since these are calculated on the surface (24), the density 
values of a ,  a' do not have to be the same as the free energy values ( a ' =  -$). 

The ordered state in IV is that of the hard-squares model, and the corresponding 
critical line in ( z ,  L, M )  space given by (24) and (30) probably lies on the same critical 
surface as the hard square model ( 2  = 3.7962 . . . , L = M = 0). Since the results (43b) 
and (47) apply only to a special surface, crossing the critical surface on a special line, it is 
not surprising that they give exponents quite different from those expected for hard 
squares (Baxter et a1 1980): even so, it is disappointing. 
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